
Windows XP Edition

David W. Fanning

IDL 7 and Subversion
Set-Up Guide

2383347809669

ISBN 978-0-9662383-3-4
90000 >

IDL 7 and Subversion Set-Up Guide
Windows XP Edition
David W. Fanning, Ph.D.

Copyright © 2007 Fanning Software Consulting, Inc. All rights reserved. No part of the contents of this
book may be reproduced or transmitted in any form or by any means without the written permission of
the publisher.

Printed in the United States of America.

Published by Fanning Software Consulting, Inc.
1645 Sheely Drive
Fort Collins, CO 80526
Phone: 970-221-0438
Fax: 970-221-0438
E-Mail: david@dfanning.com
Internet Address: http://www.dfanning.com/

Printing History

December 2007: First Printing

Cover photograph of Brooks Range, Alaska by David Fanning.

ISBN 978-0-9662383-3-4

December 2007

IDL is a registered trademark of ITT Visual Information Solutions, Inc.
The X Window System is a trademark of the Massachusetts Institute of Technology.
Windows and Windows XP are trademarks of Microsoft Corporation.
UNIX is a registered trademark of UNIX System Laboratories.

Subversion, TortoiseSVN, and Subclipse are Open Software projects sponsored by Tigris.org.

Set-Up Guide
✦ Discovering the Possibilities ✦✦✦

✦

Setting up IDL 7 with Subversion

Getting Started
One of the purported advantages of the new Eclipse-based IDL Workbench,
introduced in IDL 7, is that it can work together with plug-ins for other software to
enhance your working experience with IDL. One obvious synergetic match-up would
be to have IDL working together with a software version control system. Subversion
is one such system that has received a great many favorable comments from
programmers. It is an Open Source project and freely available.

The purpose of this Guide is to take you though the steps necessary to set-up and
install a Subversion version control system on a Windows XP computer and get it
working with the IDL 7 Workbench for a single-user of IDL. The steps described here
are not the only way this can be done. Rather, it describes one way it can be done. In
truth, it describes the way I would do it now, having benefited from nearly a week’s
worth of experience doing it in every possible wrong way. The goal here is to save you
some time and frustration, and perhaps get you set up in a way that makes it easier to
work with IDL and not harder.

Step 1: Install IDL 7
You may have already installed IDL 7 and spent some anxious moments trying to
figure out how to organize your previous collection of IDL programs as Workbench
projects. My own goal in doing this was to keep intact as much of my previous IDL
software organization as possible. I am going to presume this is your goal, too.

My organization consists of a directory, david, which contains an assortment of IDL
programs. This is my “home” directory and the place where I work in IDL if nothing
special is going on. Inside of this directory, I have a number of other directories that
contain IDL code organized for a particular purpose. For example, I have three
directories that contain “library” code of the IDL libraries I use frequently: coyote,
jhuapl, and nasa. Normally, these three libraries, at least, are on my IDL path at all
times. In addition, I have directories that pertain to software development projects of
my own: catalyst and activecontour. And I have other directories that pertain to
software development projects for clients. Normally, these are stored in a directory
named clients. I have perhaps 10-12 directories or so at any one time. I wish to
maintain most of the IDL software I write (but not all the IDL software I use) under
version control.
3

Setting up IDL 7 with Subversion
The IDL directory structure I was using prior to installing IDL 7, looked similar to the
directory structure you see in Figure 1, below, although it was stored in another place.
I copied it from there to the C drive and put it into a folder named david..

☞ I encourage you to work with a copy of your IDL program structure because the possi-
bility that everything will work perfectly here, even with these instructions, is—in my
experience—not that high. Having a backup to fall back on will save several years
worth of gray hairs, at a minimum. Plus, you may be like me and find that your ad-hoc
IDL directory structure can use a little pruning here and there anyway. This gives you
the perfect opportunity to make your directory structure better than it was before.

If we incorporate this duplicate directory structure successfully into IDL 7, we will be
able to make it the default IDL Workspace, or we will be able to move our new
directory structure over to the old Workspace. Either way, there is no risk in working
on the backup.

If you are just now installing IDL 7, then when it asks you where you want to install
your Workspace think carefully. This is going to be the place where you can store your
IDL project files. A “project” in Eclipse-speak is a group of files, normally IDL files
(but you can include data and other resource files as well), that are all related in a
particular file hierarchy under the project folder. This is not always the same as where
you keep all your IDL-related files, although it could be. The IDL project hierarchy is
shallow. It is not possible to create IDL projects in other IDL project directories.
(Although individual projects can have complicated and deep file hierarchies, they
cannot have other projects inside them.) So keep this in mind as you organize your
new directory. I show you a fairly simple hierarchy in this example. Yours might be
more complicated. Projects do not have to reside inside the IDL workspace folder,
although they often do, and I have found that life is often easier if they do.

I will show you later how to create IDL project folders. These are often just created
with your Windows Explorer, or they can be created from within IDL itself. The latter
is often the best way if you are working with the Subversion version control system. I
will show you how to create folders both ways in this Guide.

Figure 1: The directory structure as it looked prior to installing IDL 7.
4

Step 1: Install IDL 7
When I installed IDL, I found the default Workspace was C:\Documents and
Settings\David\IDLWorkspace. But I’m old school and don’t work much in the
Documents and Settings folder, so I preferred to locate the Workspace somewhere
else. You can choose to locate it wherever you like. If you make a bad choice, don’t
worry about it. You can change the location later, or even create another Workspace.
You can have as many Workspaces as you like. I could have chosen, as I did in this
example, to have C:\david be my IDL Workspace.

OK, go ahead and install IDL 7 now. Choose your Workspace to be the directory you
just created for working with this Guide (your copy, not the original). Be sure to
license IDL 7, too. If you have already installed IDL 7 and your Workspace is already
configured, just read on.

If you have already installed IDL 7, and you chose your Workspace as something else,
no problem. We will just create a new IDL Workspace that points to the duplicate
directory structure you just set up. Go into the File menu on the IDL Workbench and
select the Switch Workspace -> Other option and browse to the top of the new
directory structure (in my case C:\david). Select that as your new IDL Workspace. The
IDL Workbench should restart with this as the new Workspace. You should see
something that looks similar to Figure 2, below.

In the Project Explorer window, you will see a “Default” project. I am going to give
that a different name. My sense of the IDL files currently in the david directory is that
these are the files I play around with in IDL. I hardly ever want these files under a
version control system. This is where I explore ideas, test answers to IDL newsgroup
questions, work out problems, etc. Once I have something I like, these finished files
go into some other folder (such as coyote), where I do want them under version

Figure 2: The IDL Workbench, now pointing to the new IDL Workspace.
5

Setting up IDL 7 with Subversion
control. I will want to move all these files into my default project in my IDL
Workbench. Thus, I am going to name my Default project, The Incubator. You can
name yours whatever makes sense to you. You see what my folder looks like after I
have done this in Figure 3. Notice that IDL has inserted an additional folder, named

.metadata, into the david directory. This contains information IDL 7 needs to manage
the Workspace.

The next thing I do is simply select and drag all the IDL files currently in david into
The Incubator folder. This is the equivalent to adding them to The Incubator project.
My Project Explorer window now looks like Figure 4.

Notice now that if you switched from a previous Workspace that under File -> Switch
Workspace you can easily go back to your previous, untouched Workspace if and
when you prefer to work there.

Figure 3: The directory structure after making the IDL Workspace and renaming
the Default project to The Incubator. Notice the .metadata folder that
was added by IDL.

Figure 4: The Project Explorer window after the IDL files have been dragged into
The Incubator folder.
6

Step 2: Install the Subversion Software
If you are the sort of IDL programmer who chooses to ignore good advice, and you
have decided to follow my directions without making a duplicate copy of your
directory structure, then I state again that I am taking no responsibility for lost files. I
hope you at least had the good sense to backup your files to a safe place.

Step 2: Install the Subversion Software
Subversion is Open Source software and can be freely downloaded. I went to this page
to download the software:

http://subversion.tigris.org/servlets/ProjectDocu-
mentList?folderID=91

I selected the svn-1.4.5-setup.exe option. It contained a Windows installer with the
basic win32 binaries for running Subversion. I simply downloaded the file, ran it, and
installed the Subversion package in the usual default location on my C drive

I am not going to describe how to use Subversion with an Apache server in this Guide.
Rather, I am going to describe how to install Subversion as a file-system repository on
your own computer. If you want to set Subversion up to run on the Apache server, I
found these instructions to be excellent:

http://a-simian-mind.blogspot.com/2007/07/subversion-on-win-
dows-with-remote.html

Subversion itself is normally run from a DOS command line. Personally, I find the
syntax of the commands, and understanding the commands, rather cryptic. I am sure
this is because I wasn’t totally familiar with either Subversion or its predecessor, CVS,
and because I am not fond of reading cryptic computer software documentation. In
any case, I wanted some more intuitive way to work with Subversion, so I also
downloaded and installed a Subversion front end, described in the next section.

Step 3: Install the TortoiseSVN Client
To make Subversion easier to set up and work with (I hate the DOS command line!) I
also downloaded and installed TortoiseSVN from this location:

http://tortoisesvn.tigris.org/

TortoiseSVN is a subversion client, which is implemented as a Windows shell
extension. It is also Open Source software and free for the downloading. What it does
is add Subversion controls to the Windows Explorer. Since this is how I work with
files, it feels completely natural to me to use this way of accessing Subversion. The
file I downloaded was TortoiseSVN-1.4.5.10425-win32-svn-1.4.5.msi. I simply
downloaded the file, opened it, and installed the software in the usual location on my
C drive.

Once I have installed TortoiseSVN, if I right-click on a file, I will get additional
TortoiseSVN functionality in the pop-up menu. You can see an example of what I
mean in Figure 5.

TortoiseSVN is not strictly required, but I am going to use it in this Guide to create the
Subversion repository. If you choose not to use TortoiseSVN, you will have to use the
Subversion command line arguments to create the repository, and you will be on your
own for that part of the set-up. I am extremely pleased with TortoiseSVN, however,
and think you will be, too. I highly recommend you download it. I am certain you will
find it useful.
7

http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91
http://a-simian-mind.blogspot.com/2007/07/subversion-on-windows-with-remote.html
http://tortoisesvn.tigris.org/

Setting up IDL 7 with Subversion
Step 4: Set up the Subversion Repository
The next step is to set up the Subversion repository. This is where the files you are
going to put under version control will reside, along with the detailed information that
describes changes you make to those files over time. To work with the files you put
into the repository, you “check them out”, work with them, then “check them back in”
when you are finished with your changes. Subversion is different from CVS in that it
can work in a natural way by checking entire directories of files in and out easily.

It pays to give some thought to how you want to organize your repository, since it can
sometimes be difficult to change the structure later. I am going to use a “standard”
structure here, since it fits nicely with the way I currently work with IDL, but other
ways work just as well. For the next few minutes, in the initial stages of setting the
repository up, if you make a mistake, just delete the repository file and start over. I did
this four or five times before I got the repository set up like I wanted it to be. The

Figure 5: After TortoiseSVN installation, right-clicking any file gives access to
TortoiseSVN functionality in the pop-up menu dialog.
8

Step 4: Set up the Subversion Repository
penalty only comes down the road when you have recorded lots of file changes. At
that point change is more difficult. Unless, of course, you don’t care about retaining a
record of the changes to the files, in which case you can always delete the repository,
or just make a new one.

Make a Subversion Repository Directory
First, create a directory where your Subversion repository is going to be located. I
would try to choose a fairly obscure location where it is out of the way, but where it is
likely to get backed up with your daily or weekly scheduled backups. (You are doing
regularly scheduled backups, aren’t you?) I just installed my SVNRepository folder at
the top level of my C drive. You can put it wherever you like. Just write down the
location, because you are going to need it later when you want to let IDL know where
it is. I think you can name the repository directory whatever name you like, but I
named mine SVNRepository, with no spaces in the name. I don’t know if the space is
important or not, but in my experience command line software is not usually fond of
spaces in names, and I want to be ultra conservative here.

Configure the Repository Directory
Now, right-click on the file you just created (in my case SVNRepository), find the
TortoiseSVN selection in the pop-up menu, pull that out, and find the Create
Repository Here... menu selection. You will be asked to make a choice as to the type
of repository you want to create. Almost certainly this is “native file system (FSFS)”.
The Berkeley Database file system is much older and not as powerful. Since we are
just setting this up, let’s choose the best and go with the default.

If you use your Windows Explorer to browse the repository directory now, you will
see a number of folders, a README.txt file, etc. Feel free to browse around, but you
will not be mucking around with anything in this directory directly from now on.
Rather, you will be interacting with this repository either though the TortoiseSVN
interface or, in a few minutes, through the Subclipse interface that we will install in
IDL 7.

Set Up the Repository Structure
The next thing you need to do is set up the basic repository structure. This will consist
of three folders at the top level of the repository, named trunk, branches, and tags. It is
not possible to just create these folders in the repository directory directly from the
Windows Explorer. Rather, it mush be done in a fairly odd way, it seems to me. Here is
now I did it.

I used the Windows Explorer to go to the temporary directory in my C drive. My
temporary directory is named temp. There, I created a new folder, which I named,
inventively enough, new. Inside the new folder, I created three other new folders,
named trunk, branches, and tags. My folders looked like those in Figure 6.

Once this is finished, right-click on the new folder, find the TortoiseSVN button, pull
that out, and find and select the Import... selection. You will be asked to supply the
URL of the repository. Since we are using a file system, not a server, the URL will
point to a file. It will look something like this:

file:///C:/SVNRepository

There will be three slashes in front of the C. The rest of the name will be up to you.
You can also click the little button beside the URL filename to browse for the right
place. Once you have it, click the OK button. The three folders inside of the new folder
will be added to the repository.
9

Setting up IDL 7 with Subversion
To see that this has been done correctly, navigate back to your repository folder
(SVNRepository, in my case) and right-click to find the TortoiseSVN selections. This
time, choose the Repo-browser selection. You should see something similar to
Figure 7.

Copy Files into the Repository
The next step is to copy the files you want to have under version control into the
repository. I am going to show you how to do this using TortoiseSVN now. Later, I
will show you how to do the same thing using Subclipse from inside of IDL. There are
various ways this can be done, and I want you to be aware of them.

This step, I am warning you, can go badly wrong. Not because of problems with
Subversion or TortoiseSVN, but because of inadvertent human error. I strongly urge
you to make copies of all the directories containing files that you want to add to the
repository. (Which you will have already done if you are working with a duplicate
directory structure.) You could copy them, for example, to the temp directory, where
they can be deleted once we know things have gone right.

If you make a mistake placing these files, it is much easier to just delete the repository
file and start over with this section, then to try to move files you have already placed
into the repository. If you do make a mistake, rest assured, you are not the first
programmer in the world to do so.

Figure 6: A new folder containing branches, tags, and trunk folders is created in
the temp directory.

Figure 7: The basic repository structure imported into the repository from the new
folder.
10

Step 5: Install the Subclipse Plug-in for IDL
OK, so in my duplicate directory structure, I want to put all the IDL *.pro files in the
coyote directory under Subversion control. Choose a directory in your file structure
you would like to add to Subversion control.

Before you import the files into the repository, however, this is a very good time to
look through your folders for files you do not want to have under version control.
These might include backup files, binary files, junk files, etc. Clean them up. Once
they have been transferred to the repository, everything is harder to do than it is now.
Seriously, do it now. It is considerably more trouble later.

Ok, I have cleaned up the files in C:\coyote so that only the files I want to include in
the repository are there. I now navigate to that file with Windows Explorer and right-
click to find the TortoiseSVN selections, and choose Import Be very careful where
you put the files when you specify the URL. You want the files to go into the trunk
folder, in a folder named coyote. You will be able to browse to your SVNRepository
directory, but you will probably have to add the trunk and coyote directories to the end
of the URL name, as in Figure 8. Be sure you specify the exact location where you
want it to go. Please check your spelling before you hit the OK button. If you make a
mistake, delete the repository directory and start over. Much easier!

Do this for as many directories as you care to add.

You see what my repository looks after adding the coyote and activecontour
directories to the repository in Figure 9.

Step 5: Install the Subclipse Plug-in for IDL
The next step is to install a Subversion plug-in into the Eclipse IDLDE that the IDL
Workbench is based on. There are several of these, but the one I am going to use is
named Subclipse. Subclipse is similar to TortoiseSVN in that it is a front-end for
Subversion functionality. In this case, I think it is not quite as easy to use as
TortoiseSVN, at least with respect to organizing the repository directory structure, so
this is why I have used TortoiseSVN to add the files to the repository first.

In addition to the instructions for installing Subclipse in this Guide, you can also find
good instructions for installing the Subclipse plug-in here:

http://subclipse.tigris.org/install.html

Here is how to do it. In the IDL Workbench, find the Help -> Software Updates ->
Find and Install... menu item. In the ensuing dialog, choose the Search for new feature

Figure 8: Be very careful to put the files in the right place. Start with the repository
location, but make sure you put the files in the trunk/coyote directory.
You may have to add the words “/trunk/coyote” to the end of the URL.
11

http://subclipse.tigris.org/install.html

Setting up IDL 7 with Subversion
to install selection and hit the Next button. On the subsequent dialog choose the New
Remote Site... button. Enter Subclipse for the Name, and http://subclipse/tigris.org/
update_1.0.x for the URL, as shown in Figure 10, and click OK.

When you finish, select the Subclipse site, by putting a checkmark in the box by its
name, and click the Finish button. IDL will download the feature to install.

Figure 9: This is what my repository looks like after adding files from the coyote
and activecontour directories to the repository.

Figure 10: The New Update Site dialog.
12

Step 6: Connect IDL to the Repository
Next, you will see an Updates dialog, as in Figure 11.

Simply click the Next button, accept the license agreement on the next display, hit the
Finish button, and IDL will download and install the plug-in software. This will take
several minutes. Once the features are installed, you will have to restart the IDL
Workbench for the features to appear in the Workbench.

Don’t worry if you don’t see any features yet, they are not obvious. You will see how
to access them in the next few steps.

Step 6: Connect IDL to the Repository
The next step is to connect IDL to the Subversion repository. Under the File menu,
find the New -> Other selection. You should see a dialog similar to the one in
Figure 12.

Select the Checkout Projects from SVN selection and click the Next button. Select the
Create a New Repository button, and click Next. You will be asked to supply the URL
to the repository.

Figure 11: Select the features you want to install in this portion of the Wizard.
13

Setting up IDL 7 with Subversion
This is where you wish you had followed my advice and written it down. But it is
something like this:

file:///C:/SVNRepository

If you have problems with this, and you get errors, you probably spelled something
incorrectly. Check your work carefully. You need to get this correct. Cancel if you get
confused and start over.

If you do this correctly, you will find yourself at the dialog in Figure 13. My advice to
you now is to simply hit the Cancel button. Don’t download files yet!

Step 7: Check Out Files into an IDL Project
This step may be the scariest of all. Be absolutely sure you have copies of all your files
before you proceed. We need to copy the files from the repository back into our
normal IDL file structure so we can work with the copies of the files, and not the
originals. But, of course, what is in our normal IDL file structure at the moment are
the original files. So, you may feel some concern when I tell you to delete all those
files in your original IDL file structure that are now copied into the repository.

Yikes! Really!?

Yes, really. In my case, since everything in both the coyote and activecontour
directories was copied into the repository, I can just delete both of those directories.
But it is possible the directories you added to the repository contained files that you
did not add to the repository, too. These files will be deleted in the next step in the next
step of this process, so if you want to add them back to your file structure after we
have finished checking files out of the repository, put them somewhere safe. (I could

Figure 12: To connect IDL to the Subversion repository, find the File->New->Other
dialog, and open the SVN folder. You are looking for the button that says
Checkout Projects from SVN.
14

Step 7: Check Out Files into an IDL Project
have moved the coyote and activecontour directories from the C:\david directory to
the C:\temp directory, for example.)

The idea here is that we are going to set up directories Coyote and ActiveContour as
IDL projects in the IDL Workspace. And we are going to check out the files we have
already added to the repository into these projects. (We will do this again, in a
different way, in just a minute.)

So, I have deleted the contour and activecontour directories in the C:\david directory.
Do the same with your directories.

Now access the File menu, and find the New -> Other selection shown in Figure 12.
This time when you select the Checkout Projects from SVN selection you can choose
to use the Existing Repository Location. Navigate to the part of the repository you
want to check out. In Figure 14, I am navigating to the coyote directory.

In the next dialog, choose the Check out as a project in the workspace selection, and
name the project appropriately. In Figure 15, I have chosen the name Coyote.

Figure 13: Ready to check out files into IDL. At this point, just hit Cancel. You will
download files in a minute.

Figure 14: Checking out the coyote directory into an IDL project.
15

Setting up IDL 7 with Subversion
When you hit the Finish button, a new project, named Coyote will be added to your
Workspace (that is, inside the C:\david folder), and the files in the repository will be
copied into that new directory. If this is done correctly, there should now be a Coyote
project in the Project Explorer window of the IDL Workbench and it (and the icons for
the files inside it) should be “decorated” in a way that you can tell at a glance that they
are under Subversion control. You can see what my Project Explorer window looks
like after adding the Coyote files in Figure 16.

Figure 15: Chose to create the project in the workspace and give the project an ap-
propriate name. Here I am naming the project Coyote.

Figure 16: Files under Subversion control are “decorated” so they can be identified
at a glance.
16

Step 7: Check Out Files into an IDL Project
You work with the files under Subversion control by accessing the Subversion menu.
You can find this by right-clicking on a project under Subversion control, and finding
the Team pull-down menu, as in Figure 17.

For example, if you had made changes to files in the project, you could choose the
Commit button to check the files back into the repository and record a new version of
the files.

Follow the same set of steps for all of the directories you have already added to the
repository. Then I will show you how to add files that already exist in the IDL
workspace to the repository from within IDL. When you are finished, you can add
additional file to this project. (Perhaps files from the directories you just put over in
the temp directory.) You will be able to add these files to Subversion or not, as you

Figure 17: Access Subversion functionality by right-clicking on project under Sub-
version control and pulling down the Team menu. Only a partial menu
listing is shown in this figure.
17

Setting up IDL 7 with Subversion
choose. Any additional files you add will be seen in the IDL project and will be
considered part of the IDL project. This is true even if the files are not managed by
Subversion.

Step 8: Adding Files from the Workspace to the Repository
You may have files already in your IDL workspace that you would like to add to the
repository. For example, in my clients folder, I have a folder named BigBucks, which
relates to work I am doing for a deep-pocket client named Big Bucks Unlimited. You
see the kinds of things I have in my file in Figure 18.

When I moved to IDL 7, I wanted to work with these files, and I wanted to add the
IDL source files to Subversion control. The directory structure I have here is not as
good as it could be to meet my goals. So while I was making the move, I decided to
reorganize the file structure a little differently. I decided that I would move all the IDL
files into a folder named source and all the other files into a folder named resources.
This will make it easier for me to manage my IDL source files with Subversion. You
see the revised file structure in Figure 19.

The first thing I need to do here is make the BigBucks files into an IDL project. From
within the IDL Workbench, I choose the File -> New -> IDL Project selection. I gave
the project the name BigBucks and selected the Create the new project from an
existing directory option, as in Figure 20. Notice that I have the button selected to
have IDL update the path preference when the file is opened or closed. I’ll show you
how to change that later in case you prefer to manage your paths directly and not have
IDL do it for you when projects are opened or closed.

Click the Finish button to have IDL create the project from the existing directory. The
project will show up in the Project Explorer window, as in Figure 21.

I might work with these files for some time like this. But, eventually I will get nervous
about making changes to these files, or I will want to send a version of the files to the

Figure 18: The files I have in clients/BigBucks from work I was doing in IDL 6.4. I
want to work with these files in IDL 7, and I would like to put the files
under Subversion control.
18

Step 8: Adding Files from the Workspace to the Repository
client, and I will want to mark which ones I send, etc. In short, I will want to have
them under version control.

This is how I would do that from within IDL, using the Subclipse front end for
Subversion that I previously installed. This is pretty much the opposite of what I did in
the previous step, where my files were already in the Subversion repository.

Figure 19: The revised BigBucks folder, with all my IDL source files in a single
source folder and all the other files in a resources folder.

Figure 20: Creating the new BigBucks project from files that already exist some-
where on disk. I am allowing IDL to manage the path when this project
is opened or closed.
19

Setting up IDL 7 with Subversion
First, I need to create a directory in the repository where I want my files to live. I
would like my repository files to more or less reflect my directory structure. In this
case, I would like to create a folder in the repository named .../truck/clients/bigbucks.

To do so, I have to switch to the SVN Repository perspective. Under the Window
menu in the IDL Workbench, chose the Open Perspective-> Other selection and
choose SNV Repository Exploring choice, as in Figure 22.

Next, right-click anywhere in the SVN Repository window, and choose the New ->
New Remote Folder option. This is how you make a new folder in the repository.
Browse in this window to the trunk folder. You want to make a clients folder here, as
in Figure 23. (It is not possible to make a clients/bigbucks folder directly. It must be
done in two steps.) Click the Finish button to add the folder to the repository.

Now, do this again to add the bigbucks folder. Be sure you add the bigbucks folder to
the clients folder you just created. You repository structure should look similar to that

Figure 21: The BigBucks project is now in the Project Explorer window.

Figure 22: Open the SVN Repository perspective by choosing the Window->Open
Perspective->Other selection and choosing the SVN Repository Explor-
ing selection in this dialog.
20

Step 8: Adding Files from the Workspace to the Repository
in Figure 24. If you make a mistake, just right click on the part of the repository you
would like to delete, choose the Delete option, and try it again.

Now that we have the correct directory created in the repository, we are ready to add
the IDL source files to it. Switch back to the IDL perspective by choosing Window ->
Open Perspective -> Other -> IDL (default).

Figure 23: You add a new folder in the repository by choosing the New->New Re-
mote Folder option after right-clicking in the SVN Repository window.
Here we add a clients folder to the trunk folder.
21

Setting up IDL 7 with Subversion
Note that you do not have to change perspectives to see the SVN Repository Explorer
window. In fact, it is often convenient to see this window in the IDL perspective. To
do this, choose the Window -> Show View -> Other selection from the menu, and then
find the SVN folder and the SVN Repository selection inside it. Selecting this and
hitting the OK button will open the SVN Repository view in a window in the IDL
perspective. (Probably in another tab down where the Console window is located.)
This allows you to see both the repository and the Project Explorer window
simultaneously.

To add the BigBucks project to the repository, navigate to the bigbucks folder in the
SVN Repository view (probably just above the Command Line window at the bottom
of your Workbench). Right-click and choose the Checkout option.

Unlike we did before, this time choose the Check out as a project configured using the
New Project Wizard option, and choose Finish. The New Project Wizard window will
open. Navigate to the IDL folder and chose the IDL Project selection, as in Figure 25.
Click the Next button.

In this dialog, give the project the name BigBucks, and choose to create the project
from an existing directory. Use the Browse button to select the BigBucks directory that
exists in C:\david\clients. If you have done this correctly, you should get a Confirm
Overwrite dialog similar to that shown in Figure 26.

This dialog asks you to confirm that you want to overwrite the contents of the folder
with what is currently in the repository. Since there is nothing currently in the
repository, this is not a dangerous operation, and you should select the OK button.

At this point, the BigBucks project is under Subversion control, as you can see by the
icon decoration in the Project Explorer window. But the IDL source files still have not
been added to the repository. You need to do so now.

In the Project Explorer window, navigate to the source directory inside the BigBucks
project. Open it and select the *.pro files. Right-click on one of the select files and
choose Team -> Add to Version Control. The IDL files will now be added to the
bigbucks/source folder in the repository.

Figure 24: The SVN Repository view after adding clients and bigbucks folders in
two steps.
22

Step 9: Enjoy Working in IDL 7
Step 9: Enjoy Working in IDL 7
Everything else you want to do with IDL and Subversion are just variations on what
you learned in this tutorial. If you want to learn more about how to use Subversion
itself, I recommend the on-line Subversion book, or even better, the on-line
TortoiseSVN help. Enjoy!

Figure 25: We are checking out the bigbucks folder in the repository to a new IDL
project that already exists on disk.

Figure 26: This dialog asks you to confirm that you want to overwrite the current
contents of the directory with the contents of the repository. Since there
is nothing in the repository currently, this is not a dangerous operation
and you should hit the OK button.
23

Setting up IDL 7 with Subversion
Appendix A: Hints and Other Odds and Ends
What I’ve collected here are a few of the odds and ends I’ve run into and had to figure
out my way around. They are listed in no particular order, but they are things it might
be handy to know every now and then.

Changing Project Properties
If you get a project set up incorrectly (perhaps you have misspelled its name, or
located it in the wrong folder, or who knows what else), you can easily correct the
problem. Simply right-click the project in the Project Explorer window and you will
find selections that will allow you to change various properties of the project. Here,
for example, is where you would rename a project, or delete it entirely. If you delete it,
you have the choice of deleting just the project itself, or the entire directory structure
attached to the project. If you do the latter, be careful that is exactly what you mean to
do, as there is no way to undo that operation.

Path Properties
If you wish to change the way IDL works with paths for a project find the Properties
menu selection at the bottom of the pop-up menu. find the IDL Project Properties
selection in the left side of the Properties dialog. Here you can check or uncheck the
Update IDL path preference option. If this option is selected, the path to the project is
added to the end of the !PATH system variable when the project is opened. The project
path is deleted from the !PATH system variable when the project is closed. The order
in which files are ordered in the !PATH system variable, then, can vary from one IDL
session to the next, depending upon the order projects have been opened.

If you want a more defined or reliable !PATH system variable, then turn this property
off for your projects and manage your IDL Path in the style of previous versions of
IDL. You will be able to construct your IDL Path from the Window -> Preferences ->
IDL -> Paths dialog. Directories added to the !PATH system variable in this way are
never added or deleted when projects are opened or closed.

Note that IDL will “analyze” the code in any directory found on your !PATH system
variable, when IDL starts up. In IDL 7.0 this can take from 1 to 10 minutes or more.
You should be able to work during this time, but some files may not be ready for color
coding, etc. until the process is completed. I typically put only frequently used IDL
library code (e.g., the coyote directory) directly on my path, and let other projects add
themselves to the path when they are opened.

Adding Project to Projects
Projects can be added to other projects, but new projects cannot be created directly in
a project folder. To add already created projects to another project, right-click the
other project and chose the Properties -> Project References selection. Select which
projects you wish to add to the project.

Problems Creating Projects
If you have a problem creating a project that you have been working with previously,
the problem can be a left over .project (“dot project”) file in the project folder. This
file is added to the project folder automatically when the project is created. If you
chose to delete a project, but not delete the contents of the directory, this project file
will be left behind, and it can prevent you from making this directory a project later
on. Just remove the .project file before you try to create a project from the folder.
24

	Setting up IDL 7 with Subversion
	Getting Started
	Step 1: Install IDL 7
	Figure�1: The directory structure as it looked prior to installing IDL 7.
	I encourage you to work with a copy of your IDL program structure because the possibility that ev...
	Figure�2: The IDL Workbench, now pointing to the new IDL Workspace.
	Figure�3: The directory structure after making the IDL Workspace and renaming the Default project...
	Figure�4: The Project Explorer window after the IDL files have been dragged into The Incubator fo...

	Step 2: Install the Subversion Software
	Step 3: Install the TortoiseSVN Client
	Figure�5: After TortoiseSVN installation, right-clicking any file gives access to TortoiseSVN fun...

	Step 4: Set up the Subversion Repository
	Make a Subversion Repository Directory
	Configure the Repository Directory
	Set Up the Repository Structure
	Figure�6: A new folder containing branches, tags, and trunk folders is created in the temp direct...
	Figure�7: The basic repository structure imported into the repository from the new folder.

	Copy Files into the Repository
	Figure�8: Be very careful to put the files in the right place. Start with the repository location...
	Figure�9: This is what my repository looks like after adding files from the coyote and activecont...

	Step 5: Install the Subclipse Plug-in for IDL
	Figure�10: The New Update Site dialog.
	Figure�11: Select the features you want to install in this portion of the Wizard.

	Step 6: Connect IDL to the Repository
	Figure�12: To connect IDL to the Subversion repository, find the File->New->Other dialog, and ope...
	Figure�13: Ready to check out files into IDL. At this point, just hit Cancel. You will download f...

	Step 7: Check Out Files into an IDL Project
	Figure�14: Checking out the coyote directory into an IDL project.
	Figure�15: Chose to create the project in the workspace and give the project an appropriate name....
	Figure�16: Files under Subversion control are “decorated” so they can be identified at a glance.
	Figure�17: Access Subversion functionality by right-clicking on project under Subversion control ...

	Step 8: Adding Files from the Workspace to the Repository
	Figure�18: The files I have in clients/BigBucks from work I was doing in IDL 6.4. I want to work ...
	Figure�19: The revised BigBucks folder, with all my IDL source files in a single source folder an...
	Figure�20: Creating the new BigBucks project from files that already exist somewhere on disk. I a...
	Figure�21: The BigBucks project is now in the Project Explorer window.
	Figure�22: Open the SVN Repository perspective by choosing the Window->Open Perspective->Other se...
	Figure�23: You add a new folder in the repository by choosing the New->New Remote Folder option a...
	Figure�24: The SVN Repository view after adding clients and bigbucks folders in two steps.
	Figure�25: We are checking out the bigbucks folder in the repository to a new IDL project that al...
	Figure�26: This dialog asks you to confirm that you want to overwrite the current contents of the...

	Step 9: Enjoy Working in IDL 7
	Appendix A: Hints and Other Odds and Ends
	Changing Project Properties
	Path Properties
	Adding Project to Projects

	Problems Creating Projects

